Elemental Graphic Display for One-Way ANOVA

data(arousal)
#Drug A
granovagg.1w(arousal[,1:2], h.rng = 1.6, v.rng = 0.5)
## 
## By-group summary statistics for your input data (ordered by group means)
##     group group.mean trimmed.mean contrast variance
## 1 Placebo      20.43        20.30    -1.92     5.83
## 2  Drug.A      24.27        24.45     1.92     7.89
##   standard.deviation group.size
## 1               2.41         10
## 2               2.81         10
## 
## Below is a t-test summary of your input data
## 
## 	Two Sample t-test
## 
## data:  unstacked.data[, 1] and unstacked.data[, 2]
## t = -3.2786, df = 18, p-value = 0.004174
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -6.300681 -1.379319
## sample estimates:
## mean of x mean of y 
##     20.43     24.27

plot of chunk granovagg.1w

###

library(MASS) # Contains the anorexia dataset
wt.gain <- anorexia[, 3] - anorexia[, 2]
granovagg.1w(wt.gain, group = anorexia[, 1])
## 
## By-group summary statistics for your input data (ordered by group means)
##   group group.mean trimmed.mean contrast variance standard.deviation
## 2  Cont      -0.45        -1.16    -3.21    63.82               7.99
## 1   CBT       3.01         1.80     0.24    53.41               7.31
## 3    FT       7.26         7.91     4.50    51.23               7.16
##   group.size
## 2         26
## 1         29
## 3         17
## 
## Below is a linear model summary of your input data
## 
## Call:
## lm(formula = score ~ group, data = owp$data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.565  -4.543  -1.007   3.846  17.893 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    3.007      1.398   2.151   0.0350 *
## groupCont     -3.457      2.033  -1.700   0.0936 .
## groupFT        4.258      2.300   1.852   0.0684 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.528 on 69 degrees of freedom
## Multiple R-squared:  0.1358,	Adjusted R-squared:  0.1108 
## F-statistic: 5.422 on 2 and 69 DF,  p-value: 0.006499

plot of chunk granovagg.1w

###

data(poison)
##Note violation of constant variance across groups in following graphic.
granovagg.1w(poison$SurvTime, group = poison$Group, ylab = "Survival Time")
## 
## By-group summary statistics for your input data (ordered by group means)
##    group group.mean trimmed.mean contrast variance standard.deviation
## 3      3       0.21         0.21    -0.27     0.00               0.02
## 9      9       0.24         0.24    -0.24     0.00               0.01
## 2      2       0.32         0.32    -0.16     0.01               0.08
## 12    12       0.32         0.32    -0.15     0.00               0.03
## 6      6       0.34         0.34    -0.14     0.00               0.05
## 8      8       0.38         0.38    -0.10     0.00               0.06
## 1      1       0.41         0.41    -0.07     0.00               0.07
## 7      7       0.57         0.57     0.09     0.02               0.16
## 10    10       0.61         0.61     0.13     0.01               0.11
## 11    11       0.67         0.67     0.19     0.07               0.27
## 5      5       0.82         0.82     0.34     0.11               0.34
## 4      4       0.88         0.88     0.40     0.03               0.16
##    group.size
## 3           4
## 9           4
## 2           4
## 12          4
## 6           4
## 8           4
## 1           4
## 7           4
## 10          4
## 11          4
## 5           4
## 4           4
## 
## The following groups are likely to be overplotted
##    group group.mean contrast
## 2      2       0.32    -0.16
## 12    12       0.32    -0.15
## 6      6       0.34    -0.14
## 
## Below is a linear model summary of your input data
## 
## Call:
## lm(formula = score ~ group, data = owp$data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.32500 -0.04875  0.00500  0.04313  0.42500 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.41250    0.07457   5.532 2.94e-06 ***
## group2      -0.09250    0.10546  -0.877 0.386230    
## group3      -0.20250    0.10546  -1.920 0.062781 .  
## group4       0.46750    0.10546   4.433 8.37e-05 ***
## group5       0.40250    0.10546   3.817 0.000513 ***
## group6      -0.07750    0.10546  -0.735 0.467163    
## group7       0.15500    0.10546   1.470 0.150304    
## group8      -0.03750    0.10546  -0.356 0.724219    
## group9      -0.17750    0.10546  -1.683 0.101000    
## group10      0.19750    0.10546   1.873 0.069235 .  
## group11      0.25500    0.10546   2.418 0.020791 *  
## group12     -0.08750    0.10546  -0.830 0.412164    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1491 on 36 degrees of freedom
## Multiple R-squared:  0.7335,	Adjusted R-squared:  0.6521 
## F-statistic:  9.01 on 11 and 36 DF,  p-value: 1.986e-07

plot of chunk granovagg.1w

##RateSurvTime = SurvTime^-1
granovagg.1w(poison$RateSurvTime, group = poison$Group, 
ylab = "Survival Rate = Inverse of Survival Time")
## 
## By-group summary statistics for your input data (ordered by group means)
##    group group.mean trimmed.mean contrast variance standard.deviation
## 4      4       1.16         1.16    -1.46     0.04               0.20
## 5      5       1.39         1.39    -1.23     0.31               0.55
## 10    10       1.69         1.69    -0.93     0.13               0.36
## 11    11       1.70         1.70    -0.92     0.49               0.70
## 7      7       1.86         1.86    -0.76     0.24               0.49
## 1      1       2.49         2.49    -0.14     0.25               0.50
## 8      8       2.71         2.71     0.09     0.17               0.42
## 6      6       3.03         3.03     0.41     0.18               0.42
## 12    12       3.09         3.09     0.47     0.06               0.24
## 2      2       3.27         3.27     0.65     0.68               0.82
## 9      9       4.26         4.26     1.64     0.06               0.23
## 3      3       4.80         4.80     2.18     0.28               0.53
##    group.size
## 4           4
## 5           4
## 10          4
## 11          4
## 7           4
## 1           4
## 8           4
## 6           4
## 12          4
## 2           4
## 9           4
## 3           4
## 
## The following groups are likely to be overplotted
##    group group.mean contrast
## 10    10       1.69    -0.93
## 11    11       1.70    -0.92
## 6      6       3.03     0.41
## 12    12       3.09     0.47
## 
## Below is a linear model summary of your input data
## 
## Call:
## lm(formula = score ~ group, data = owp$data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.76848 -0.29639 -0.06915  0.25455  1.07932 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.4869     0.2450  10.151 4.16e-12 ***
## group2        0.7816     0.3465   2.256 0.030247 *  
## group3        2.3158     0.3465   6.684 8.56e-08 ***
## group4       -1.3234     0.3465  -3.820 0.000508 ***
## group5       -1.0935     0.3465  -3.156 0.003226 ** 
## group6        0.5421     0.3465   1.565 0.126414    
## group7       -0.6242     0.3465  -1.801 0.080010 .  
## group8        0.2270     0.3465   0.655 0.516468    
## group9        1.7781     0.3465   5.132 1.00e-05 ***
## group10      -0.7972     0.3465  -2.301 0.027299 *  
## group11      -0.7853     0.3465  -2.267 0.029517 *  
## group12       0.6049     0.3465   1.746 0.089344 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.49 on 36 degrees of freedom
## Multiple R-squared:  0.8681,	Adjusted R-squared:  0.8277 
## F-statistic: 21.53 on 11 and 36 DF,  p-value: 1.289e-12

plot of chunk granovagg.1w

##Nonparametric version: RateSurvTime ranked and rescaled
##to be comparable to RateSurvTime; 
##note labels as well as residual (rug) plot below.
granovagg.1w(poison$RankRateSurvTime, group = poison$Group, 
ylab = "Ranked and Centered Survival Rates",
main = "One-way ANOVA display, poison data (ignoring 2-way set-up)", 
res = TRUE)
## 
## By-group summary statistics for your input data (ordered by group means)
##    group group.mean trimmed.mean contrast variance standard.deviation
## 4      4       1.11         1.11    -1.38     0.03               0.18
## 5      5       1.36         1.36    -1.13     0.28               0.53
## 10    10       1.67         1.67    -0.82     0.10               0.31
## 11    11       1.69         1.69    -0.80     0.50               0.71
## 7      7       1.82         1.82    -0.67     0.24               0.49
## 1      1       2.39         2.39    -0.10     0.30               0.55
## 8      8       2.72         2.72     0.23     0.19               0.44
## 6      6       3.04         3.04     0.55     0.18               0.42
## 12    12       3.09         3.09     0.61     0.05               0.22
## 2      2       3.15         3.15     0.66     0.39               0.62
## 9      9       3.78         3.78     1.29     0.03               0.16
## 3      3       4.04         4.04     1.55     0.03               0.16
##    group.size
## 4           4
## 5           4
## 10          4
## 11          4
## 7           4
## 1           4
## 8           4
## 6           4
## 12          4
## 2           4
## 9           4
## 3           4
## 
## The following groups are likely to be overplotted
##    group group.mean contrast
## 10    10       1.67    -0.82
## 11    11       1.69    -0.80
## 6      6       3.04     0.55
## 12    12       3.09     0.61
## 2      2       3.15     0.66
## 
## Below is a linear model summary of your input data
## 
## Call:
## lm(formula = score ~ group, data = owp$data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7375 -0.2900 -0.0375  0.2606  0.9225 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3925     0.2195  10.899 5.93e-13 ***
## group2        0.7550     0.3105   2.432 0.020121 *  
## group3        1.6425     0.3105   5.291 6.16e-06 ***
## group4       -1.2825     0.3105  -4.131 0.000205 ***
## group5       -1.0300     0.3105  -3.318 0.002083 ** 
## group6        0.6475     0.3105   2.086 0.044157 *  
## group7       -0.5775     0.3105  -1.860 0.071043 .  
## group8        0.3250     0.3105   1.047 0.302141    
## group9        1.3900     0.3105   4.477 7.33e-05 ***
## group10      -0.7225     0.3105  -2.327 0.025691 *  
## group11      -0.7050     0.3105  -2.271 0.029235 *  
## group12       0.7025     0.3105   2.263 0.029775 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.439 on 36 degrees of freedom
## Multiple R-squared:  0.8542,	Adjusted R-squared:  0.8097 
## F-statistic: 19.18 on 11 and 36 DF,  p-value: 7.233e-12

plot of chunk granovagg.1w

###

data(chickwts)
?chickwts # An explanation of the chickwts dataset
with(chickwts, granovagg.1w(weight, group = feed)) # Modeling weight as explained by feed type
## 
## By-group summary statistics for your input data (ordered by group means)
##       group group.mean trimmed.mean contrast variance
## 2 horsebean     160.20       154.33  -101.11  1491.96
## 3   linseed     218.75       219.50   -42.56  2728.57
## 5   soybean     246.43       246.50   -14.88  2929.96
## 4  meatmeal     276.91       280.43    15.60  4212.09
## 1    casein     323.58       331.38    62.27  4151.72
## 6 sunflower     328.92       326.38    67.61  2384.99
##   standard.deviation group.size
## 2              38.63         10
## 3              52.24         12
## 5              54.13         14
## 4              64.90         11
## 1              64.43         12
## 6              48.84         12
## 
## Below is a linear model summary of your input data
## 
## Call:
## lm(formula = score ~ group, data = owp$data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -123.909  -34.413    1.571   38.170  103.091 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     323.583     15.834  20.436  < 2e-16 ***
## grouphorsebean -163.383     23.485  -6.957 2.07e-09 ***
## grouplinseed   -104.833     22.393  -4.682 1.49e-05 ***
## groupmeatmeal   -46.674     22.896  -2.039 0.045567 *  
## groupsoybean    -77.155     21.578  -3.576 0.000665 ***
## groupsunflower    5.333     22.393   0.238 0.812495    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 54.85 on 65 degrees of freedom
## Multiple R-squared:  0.5417,	Adjusted R-squared:  0.5064 
## F-statistic: 15.36 on 5 and 65 DF,  p-value: 5.936e-10

plot of chunk granovagg.1w