Predicted response data object

## ------------------------------------------------------------
## classification example
## ------------------------------------------------------------
## -------- iris data
# rfsrc_iris <- rfsrc(Species ~ ., data = iris)
data(rfsrc_iris, package="ggRandomForests")
gg_dta<- gg_rfsrc(rfsrc_iris)

plot(gg_dta)

plot of chunk gg_rfsrc.rfsrc

## ------------------------------------------------------------
## Regression example
## ------------------------------------------------------------
## Not run: 
##D ## -------- air quality data
##D # rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute")
##D data(rfsrc_airq, package="ggRandomForests")
##D gg_dta<- gg_rfsrc(rfsrc_airq)
##D 
##D plot(gg_dta)
## End(Not run)

## -------- Boston data
data(rfsrc_Boston, package="ggRandomForests")
plot(rfsrc_Boston)

plot of chunk gg_rfsrc.rfsrc

## 
##           Importance   Relative Imp
## lstat        54.9327         1.0000
## rm           35.9003         0.6535
## nox           7.2992         0.1329
## ptratio       5.6889         0.1036
## crim          5.2754         0.0960
## dis           4.4226         0.0805
## indus         4.3142         0.0785
## tax           2.6846         0.0489
## age           2.5838         0.0470
## black         0.8569         0.0156
## rad           0.7792         0.0142
## zn            0.1949         0.0035
## chas          0.1642         0.0030
## Not run: 
##D ## -------- mtcars data
##D data(rfsrc_mtcars, package="ggRandomForests")
##D gg_dta<- gg_rfsrc(rfsrc_mtcars)
##D 
##D plot(gg_dta)
## End(Not run)
## ------------------------------------------------------------
## Survival example
## ------------------------------------------------------------
## Not run: 
##D ## -------- veteran data
##D ## randomized trial of two treatment regimens for lung cancer
##D # data(veteran, package = "randomForestSRC")
##D # rfsrc_veteran <- rfsrc(Surv(time, status) ~ ., data = veteran, ntree = 100)
##D data(rfsrc_veteran, package = "ggRandomForests")
##D gg_dta <- gg_rfsrc(rfsrc_veteran)
##D plot(gg_dta)
##D 
##D gg_dta <- gg_rfsrc(rfsrc_veteran, conf.int=.95)
##D plot(gg_dta)
##D 
##D gg_dta <- gg_rfsrc(rfsrc_veteran, by="trt")
##D plot(gg_dta)
## End(Not run)

## -------- pbc data
## We don't run this because of bootstrap confidence limits
data(rfsrc_pbc, package = "ggRandomForests")

## Not run: 
##D gg_dta <- gg_rfsrc(rfsrc_pbc)
##D plot(gg_dta)
##D 
##D gg_dta <- gg_rfsrc(rfsrc_pbc, conf.int=.95)
##D plot(gg_dta)
## End(Not run)

gg_dta <- gg_rfsrc(rfsrc_pbc, by="treatment")
plot(gg_dta)

plot of chunk gg_rfsrc.rfsrc